Recurrent Neural Networks and Super-Turing Interactive Computation
نویسنده
چکیده
We present a complete overview of the computational power of recurrent neural networks involved in an interactive bio-inspired computational paradigm. More precisely, we recall the results stating that interactive rationaland realweighted neural networks are Turing-equivalent and super-Turing, respectively. We further prove that interactive evolving neural networks are super-Turing, irrespective of whether their synaptic weights are modeled by rational or real numbers. These results show that the computational powers of neural nets involved in a classical or in an interactive computational framework follow similar patterns of characterization. They suggest that some intrinsic computational capabilities of the brain might lie beyond the scope of Turing-equivalent models of computation, hence surpass the potentialities every current standard artificial models of computation.
منابع مشابه
Interactive Evolving Recurrent Neural Networks Are Super-Turing Universal
We consider a model of evolving recurrent neural networks where the synaptic weights can change over time, and we study the computational power of such networks in a basic context of interactive computation. In this framework, we prove that both models of rationaland real-weighted interactive evolving neural networks are computationally equivalent to interactive Turing machines with advice, and...
متن کاملThe Computational Power of Interactive Recurrent Neural Networks
In classical computation, rational- and real-weighted recurrent neural networks were shown to be respectively equivalent to and strictly more powerful than the standard Turing machine model. Here, we study the computational power of recurrent neural networks in a more biologically oriented computational framework, capturing the aspects of sequential interactivity and persistence of memory. In t...
متن کاملThe Super-Turing Computational Power of plastic Recurrent Neural Networks
We study the computational capabilities of a biologically inspired neural model where the synaptic weights, the connectivity pattern, and the number of neurons can evolve over time rather than stay static. Our study focuses on the mere concept of plasticity of the model so that the nature of the updates is assumed to be not constrained. In this context, we show that the so-called plastic recurr...
متن کاملLearning Capabilities of Recurrent Neural
Recurrent neural networks are important models of neural computation This work relates the power of them to those of other conventional models of computation like Turing machines and nite automata and proves results about their learning capabilities Speci cally it shows a Probabilistic recurrent networks and Probabilistic turing ma chine models are equivalent b Probabilistic recurrent networks ...
متن کاملTuring's analysis of computation and artificial neural network
A novel way to simulate Turing Machines (TMs) by Artificial Neural Networks (ANNs) is proposed. We claim that the proposed simulation is in agreement with the correct interpretation of Turing’s analysis of computation; compatible with the current approaches to analyze cognition as an interactive agent-environment process; and physically realizable since it does not use connection weights with u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015